Journal of Organometallic Chemistry, 314 (1986) 123-130 Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

BILDUNG EINES NEUARTIGEN (η -1,3-BUTADIENYL)NIOB-KOMPLEXES DURCH REAKTION VON 2-BUTIN MIT BIS(η -CYCLOPENTADIENYL)-NIOBTRIHYDRID: SYNTHESE, KRISTALL- UND MOLEKÜLSTRUKTUR VON BIS(η -CYCLOPENTADIENYL) [1,3,4- η ³-(1,2,3,4-TETRAMETHYL-1,3-BUTADIENYL)]NIOB

G.E. HERBERICH*, B. HESSNER und H. MAYER

Institut für Anorganische Chemie der Technischen Hochschule Aachen, Professor-Pirlet-Str. 1, D-5100 Aachen (Bundesrepublik Deutschland) (Eingegangen den 21. April 1986)

Summary

Reaction of the trihydride Cp_2NbH_3 with excess 2-butyne effects oxidative coupling of two 2-butyne molecules with formation of bis(η -cyclopentadienyl)[1,3,4- η^3 -(1,2,3,4-tetramethyl-1,3-butadienyl)]niobium (III). This complex crystallizes in a monoclinic space group $P2_1/n$ with Z=4 in a unit cell of dimensions a 823.9(2), b 1293.3(2), c 1423.0(2) pm, β 92.02(1)°. The structure and bonding in III can be described in terms of the resonance of (1,3,4- η^3 -1,3-butadienyl)niobium and of nioba-1,3-cyclopentadiene structures.

Zusammenfassung

Die Reaktion des Trihydrids Cp_2NbH_3 mit überschüssigem 2-Butin führt unter oxidativer Kopplung von zwei 2-Butin-Molekülen zur Bildung von $Bis(\eta$ -cyclopentadienyl)[1,3,4- η^3 -(1,2,3,4-tetramethyl-1,3-butadienyl)]niob (III). Dieser Komplex kristallisiert in einer monoklinen Zelle der Raumgruppe $P2_1/n$ mit Z=4 mit den Zellkonstanten a 823.9(2), b 1293.3(2), c 1423.0(2) pm, β 92.02(1)°. Die Struktur und die Bindung in III können mit Hilfe der Grenzformeln von (1,3,4- η^3 -1,3-Butadienyl)niob- und Nioba-1,3-cyclopentadien-Strukturen beschrieben werden.

Die Reaktionen von Acetylenen mit Hydridometall-Komplexen gehören zu den Grundreaktionen der metallorganischen Komplexchemie [1,2]. Die Reaktion von Niobocentrihydrid Cp₂NbH₃ (I) mit Acetylenen ist erstmals 1975 kurz beschrieben worden [3] und führt zur Klasse der Niobocen(acetylen)hydride Cp₂NbH(C₂R₂) [3-7]. Beim Versuch die Synthese des 2-Butin-Komplexes II, durch Umsetzung des

Trihydrids I mit 2-Butin zu reproduzieren, sind wir auf die überraschende Synthese der Titelverbindung III gestossen.

$$Cp_2NbH_3$$
 $Cp_2NbH(C_2Me_2)$ $Cp_2Nb(C_4HMe_4)$
(I) (III) (III)

Präparative und spektroskopische Ergebnisse

Das Trihydrid I wird in Toluol bei 90°C Badtemperatur mit überschüssigem 2-Butin innerhalb von 30 Min vollständig verbraucht. Im Rohprodukt ist der Hydrido-Komplex II NMR-spektroskopisch nicht nachweisbar. Stattdessen isoliert man durch Umkristallisieren aus Hexan mit 75% Ausbeute ein neues Produkt, welches sich im folgenden als die Titelverbindung erweist.

Auch wenn das Trihydrid I mit 2-Butin genau im Stoffmengenverhältnis 1/1 umgesetzt wird, bleibt die Reaktion nicht auf der Stufe des Hydrido-Komplexes II stehen. Selbst bei Raumtemperatur erhält man ein Gemisch von Ausgangsmaterial I, Hydrido-Komplex II und Butadienyl-Komplex III. Dabei ist II Zwischenstufe auf dem Weg zu III; II, unabhängig aus Cp₂NbCl₂ und LiCMe=CHMe synthetisiert [8], reagiert nämlich mit 2-Butin bei Raumtemperatur über Nacht quantitativ zu III.

Die neue Verbindung III zeigt im ¹H-NMR-Spektrum zwei Signale bei 4.89 und 4.59 ppm für die nicht äquivalenten Cyclopentadienyl-Ringe, vier Signale für Methyl-Gruppen, von denen eines durch eine vicinale Kopplung (3J 6.2 Hz) und eines durch eine allylische Kopplung (4J 1.0 Hz) als Dublett erscheint, und ferner ein verbreitertes Quartett bei -0.65 ppm (3J 6.2 Hz) für ein terminales Proton, dessen chemische Verschiebung an die der *anti*-Protonen in (η -Butadien)bis(η -cyclopentadienyl)zirkon-Komplexen erinnert [9,10]. Bemerkenswert sind im 13 C-NMR-Spektrum ein Signal bei 227.5 ppm für ein carbenartiges C-Atom und ein Signal bei 58.6 ppm für eine Nb-C-Gruppierung, die beide durch 93 Nb-Quadrupol-Kopplung verbreitert sind, sowie zwei weitere scharfe Resonanzen bei 134.2 und 120.7 ppm von olefinischen C-Atomen (Vergleichsmaterial siehe Lit, 11).

Mit diesen NMR-Daten ist die Konstitution der NbC₄-Gruppierung gut belegt. Es zeigt sich aber auch, dass neben den Grenzformeln IV einer $(1,3,4-\eta^3-1,3-Buta-dienyl)$ niob-Struktur auch die Grenzformel V einer Nioba-1,3-cyclopentadien-Struktur zu betrachten ist. In dieser Grenzformel besitzt C(1) (Numerierung hier und im folgenden auf der Basis der Formeln IV) Carben-Charakter und C(3) ist nicht mehr an das Nb-Atom gebunden. Diese Sachlage wird unten auf der Grundlage der Strukturdaten nochmals aufgegriffen.

Experimentelles

Alle Versuche wurden mithilfe der üblichen Schlenktechnik unter Stickstoff als Schutzgas durchgeführt. Toluol wurde über Natrium, Hexan über K/Na-Legierung

getrocknet und von Sauerstoff-Spuren befreit. Käufliches 2-Butin wurde über Molsieben aufbewahrt und vor Verwendung durch Einfrier-Auftau-Zyklen im Hochvakuum entgast.

Bis(η -cyclopentadienyl)[1,3,4- η ³-(1,2,3,4-tetramethyl-1,3-butadienyl)]niob (III)

Man erwärmt 1.16 g (5.13 mmol) Cp₂NbH₃ [12] und 2.0 ml (25 mmol) 2-Butin in 40 ml Toluol 30 min bei 90°C Badtemperatur. Abziehen alles Flüchtigen im Hochvakuum bei Raumtemp., Aufnehmen des roten Rückstands in 40 ml Hexan, Filtrieren durch eine G4-Fritte oder durch wenig Kieselgur und Kristallisation bei -30°C mit Einengen und erneutem Kühlen liefert 1.28 g (3.85 mmol; 75%) derbe schwarze Kristalle von III; Schmp. 96-97°C, auch als Feststoff luftempfindlich. Gef.: C, 64.80; H, 6.87. C₁₈H₂₃Nb ber.: C, 65.06; H, 6.98%.

Massenspektrum (70 eV): m/e ($I_{\rm rel.}$) 332 (7; M^+), 278 (6; $M-C_4H_6$), 224 (36; M-2 $C_4H_6={\rm Cp_2NbH^+}$), 223 (23; ${\rm NbCp_2^+}$), 95 (100; ?). ${}^1{\rm H-NMR-Spektrum}$ (δ(${}^1{\rm H}$) (ppm), 80 MHz, gg. int. TMS, C_6D_6): 4.89 s (Cp), 4.59 s (Cp), 2.59 s (Me), 2.07 d (${}^3{\it J}$ 6.2 Hz; 4-Me), 1.92 s (Me), 1.81 d (${}^4{\it J}$ 1.0 Hz; 3-Me), -0.65 q (br) (${}^3{\it J}$ 6.2 Hz; 4-H). ${}^{13}{\rm C-NMR-Spektrum}$ (δ(${}^{13}{\rm C}$) (ppm) (${\it J}$ (Hz)), 67.88 MHz, gg. int. TMS, C_6D_6 , Raumtemp.): 227.5 (sehr breit) (C(1)), 134.2 m und 120.7 m (C(2) und C(3)), 97.8 dquin (${}^1{\it J}$ 172.2, ${}^{2.3}{\it J}$ 6.5 Hz) (Cp), 96.2 dquin (${}^1{\it J}$ 174.4, ${}^{2.3}{\it J}$ 6.5 Hz) (Cp), 58.6 d (br) (${}^1{\it J}$ 139.5 Hz) (C(4)), 26.3 q (${}^1{\it J}$ 124.3) (Me), 21.3 q (${}^1{\it J}$ 124.3 Hz) (Me), 17.6 qd (${}^1{\it J}$ 126.4, ${}^2{\it J}$ 4.4 Hz) (4-Me), 15.1 q (${}^1{\it J}$ 124.3 Hz) (Me).

Strukturbestimmung von III

Cp₂Nb(C₄HMe₄) (III), Mol.-Masse 332.28 g/mol; monoklin, Raumgruppe $P2_1/n$ (Nr. 14), a 823.9(2), b 1293.3(2), c 1423.0(2) pm, β 92.02(1)°; Z=4, U 1.527(1) nm³, d_{ront} 1.456 g/cm³; Absorptionskoeffizient für Mo- K_{α} -Strahlung μ 7.45 cm⁻¹.

Messung: Automatisches Vierkreisdiffraktometer CAD4 (Fa. Enraf-Nonius, Delft/Niederlande); Mo- K_{α} -Strahlung (Graphit-Monochromator, 71.069 pm); ω -2 θ -Methode mit 0.1 < θ < 35°; Raumtemperatur.

An einem quaderförmigen Kristall $(0.6 \times 0.4 \times 0.25 \text{ mm}^3)$ wurden 5338 unabhängige Reflexe gemessen. Eine empirische Absorptionskorrektur auf der Basis von ψ -Scans wurde durchgeführt. Bei der Strukturlösung [13] wurden 4730 unabhängige Reflexe mit $I > 3\sigma(I)$ berücksichtigt. Die Lösung der Struktur erfolgte mit Hilfe der Schweratom-Methode. Durch Differenz-Fouriersynthese wurden das anti-ständige H-Atom (4-H) und je ein H-Atom der Methyl-Gruppen lokalisiert, alle übrigen H-Atome wurden an berechneten Lagen (d(C-H)) 108 ppm) eingesetzt. Die Nichtwasserstoffatome wurden anisotrop, die H-Atome der Cp-Ringe und das H-Atom 4-H wurden mitgeführt und isotrop verfeinert.

Die abschliessende Verfeinerung [14] mit 183 Parametern führte zu R_w 0.038, wobei $w^{-1} = \sigma^2(F_0) + 0.0003F_0^2$ als Wichtungsschema verwendet wurde.

Beschreibung der Struktur

III kristallisiert als Van der Waals-Kristall mit einem Molekül in der asymmetrischen Einheit. Figur 1 gibt eine Ansicht des Moleküls mit der Numerierung der Atome wieder. Die Lage- und Temperaturparameter sind in Tabelle 1, die Bindungslängen, Bindungswinkel und einige Diederwinkel in Tabelle 2 zusammenge-

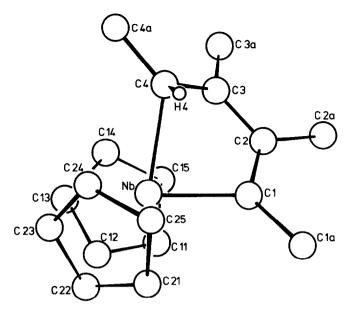


Fig. 1. Die Geometrie von III.

stellt. Man erkennt die typische Struktur eines gewinkelten Metallocens mit der unsymmetrischen (C₄HMe₄)-Baueinheit in der pseudoäquatorialen Region.

Die Struktur des Bis(η-cyclopentadienyl)niob-Fragments stimmt im wesentlichen mit dem von Komplexen des Typs Cp₂NbXY bekannten Muster [15] überein. Die beiden Cyclopentadienyl-Ringe sind planar und auf Deckung angeordnet. Die Abstände Nb-C liegen für den einen Cp-Ring zwischen 240.3(2) und 243.4(2), für den anderen zwischen 242.9(2) und 255.2(2) pm und deuten auf eine sterisch verursachte Labilisierung der Nb-Cp-Bindung. Der Winkel zwischen den Loten vom Nb-Atom auf die Cp-Ringe beträgt 128.6°; für Cp₂Nb(O₂)Cl ist z.B. 127.3° [16] gefunden worden, während Cp₂NbH₃ in Übereinstimmung mit theoretischen Befunden [17] den grösseren Wert von 141.6° zeigt [18].

Die Ebene [C(1), Nb, C(4)] des (Butadienyl)niob-Fragments fällt erwartungsgemäss [17] fast genau mit der Mittelebene (Pseudoäquatorebene) des gewinkelten Metallocens zusammen (Abweichung 3.0°). Das (Butadienyl)niob-Fragment ist gefaltet, so dass C(3) und C(4) beträchtlich aus der Mittelebene ausgelenkt sind. Die Abstände in diesem Teil des Moleküls sind in Figur 2 zusammengestellt.

Der Abstand Nb-C(4) von 228.6(2) pm entspricht dem, was man z.B. aufgrund der Daten von $Cp_2Nb(C_2H_4)Et$ [19], für eine σ -Bindung Nb-C erwartet, wenn das C-Atom vier Partner bindet. Der Abstand Nb-C(1) beträgt 208.2(2) pm und zeigt damit beträchtliche Nb-C- π -Wechselwirkungen an. Kürzere experimentelle Nb-C-Abstände sind von dem Zweikernkomplex μ -(CSiMe₃)₂-[Nb(CH₂SiMe₃)₂]₂ mit 195.4(9) und 199.5(9) pm bekannt [20]. Rechnerische Geometrieoptimierungen an Modellverbindungen haben für die Nb-C-Doppelbindung kürzere Abstände als die hier gefundenen ergeben [21,22]; da aber auch für die gut charakterisierte Nb-C-Einfachbindung zu kurze Werte berechnet worden sind [22], sind die berechneten Daten in unserem Zusammenhang zu wenig aussagekräftig. Die Abstände Nb-C(2)

TABELLE 1
DIE ATOMKOORDINATEN UND TEMPERATURKOEFFIZIENTEN ° VON III

Atom	x	у	Z	Atom	x	у	z
Nb	0.17024	(2) 0.02662(0.29015(1)	H(4)	0.1879	0,2202	0.3001
C(1)	0.2361(3			C(1a)	0.3672(4		0.0916(2)
C(2)	0.0936(3			C(2a)	0.0316(4		
C(3)	-0.0010(2		0.2109(2)	C(3a)	-0.1780(3		
C(4)	0.0703(3	0.1908(1)		C(4a)	-0.0219(4	0.2393(2)	0.3810(2)
H(1a1)	0.4800	0.1024	0.1163	H(2a1)	0.1335	0.1452	-0.0104
H(1a2)	0.3298	0.1019	0.0249	H(2a2)	-0.0388	0.0969	0.0197
H(1a3)	0.3858	-0.0218	0.0818	H(2a3)	-0.0292	0.2219	0.0268
H(3a1)	-0.1877	0.2642	0.1725	H(4a1)	-0.0598	0.3163	0.3608
H(3a2)	-0.2413	0.1971	0.2577	H(4a2)	-0.1214	0.1952	0.3933
H(3a3)	-0.2309	0.1508	0.1415	H(4a3)	0.0549	0.2431	0.4440
C(11)	0.0263(3	3) -0.1197(2		H(11)	0.0785	-0.1507	0.1573
C(12)	0.0630(3	-0.1504(2)		H(12)	0.1476	-0.2105	0.3344
C(13)	-0.0284(3	, , ,		H(13)	-0.0276	-0.0964	0.4496
C(14)	-0.1207(3			H(14)	-0.1999	0.0389	0.3453
C(15)	-0.0906(3	-0.0418(2)	0.2235(2)	H(15)	-0.1486	-0.0040	0.1635
C(21)	0.4541(3	-0.0155(3)	0.3049(3)	H(21)	0.5128	-0.0463	0.2443
C(22)	0.3824(3			H(22)	0.3758	-0.1554	0.3754
C(23)	0.3185(4	4) $-0.0048(3)$	0.4377(2)	H(23)	0.2526	-0.0266	0.4989
C(24)	0.3545(4		0.4102(2)	H(24)	0.3220	0.1650	0.4469
C(25)	0.4388(3		0.3285(3)	H(25)	0.4844	0.1548	0.2893
Atom	<i>U</i> ₁₁	U_{22} U_3	. U ₁₂	U_1	, <i>U</i>	7 ₂₃ Ato	om U _{eq}
Nb	2.290(7)	2.746(7) 3.	249(7) 0.0	40(5) -	0.029(4) -	-0.121(6)	
C(1)	4.7(1)	3.78(8) 4.	05(9) -0.2	3(8)	1.25(8)	0.06(7)	
C(2)	5.3(1)		93(9) -0.5		0.55(8)	0.75(7)	
C(3)	3.53(9)		9(1) 0.3		0.43(8)	1.19(8)	
C(4)	4.5(1)				1.14(8)	0.24(7) H(4	4) 5.2(7)
C(1a)	8.2(2)		3(2) 0.1		4.1(2)	0.2(1)	
C(2a)	11.8(3)		1(1) -0.0	(2) –	2.7(2)	0.5(1)	
C(3a)	4.3(1)	5.9(1) 11.	4(2) 1.3	(1) –	1.1(1)	2.1(2)	
C(4a)	9.2(2)	4.7(1) 7.	1(2) 2.1			-0.1(1)	
C(11)	5.5(1)	3.81(9) 5.	4(1) -1.2	6(9) –	0.57(9) -	-0.55(8) H(11) 7.4(9)
C(12)	5.0(1)		0(1) -0.7		1.2(1)	1.05(9) H(
C(13)	4.8(1)	5.9(1) 5.	4(1) -1.6		0.54(9)	1.7(1) H(13) 8.5(10)
C(14)	3.18(9)		5(2) -0.6	9(8)	1.04(9)	0.5(1) H(
C(15)	3.9(1)		0(1) -1.3	6(8) -	1.46(9)	0.99(9) H(
C(21)	3.3(1)	9.9(2) 8	7(2) 2.5	(1) –		-1.0(2) H(
C(22)	5.2(1)	4.7(1) 10	9(2) 0.3		3.8(2)	1.4(1) H(22) 11.0(12)
C(23)	6.3(2)		3(1) 0.2	(2) –	2.4(1)	1.5(2) H(23) 10.5(13)
C(24)	6.7(2)	7.2(2) 8.	5(2) 1,7	(1) –	4.4(2) -	-3.6(2) H(24) 12.2(13)

^a Form des Temperaturfaktors: $\exp[-2\pi^2(U_{11}h^2a^{*2} + ... U_{12}hka^*b^* + ...)]; U_{ij}$ in 10⁴ pm².

-1.3(1)

-2.9(1)

2.5(2)

H(25)

8.7(10)

C(25)

3.2(1)

6.1(1)

12.7(3)

und Nb-C(3) sind ca. 17 bzw. 15% länger als eine typische Nb-C-Einfachbindung und entsprechen damit schwachen Wechselwirkungen; ob bindenden oder lockernden, ist aufgrund der Abstandsdaten allein nicht zu entscheiden.

Die C-C-Bindungslängen zeigen eine wesentliche Besetzung des LUMOs der Butadienyl-Einheit. Damit wird die schon erwähnte beträchtliche Nb-C- π -Wechselwirkung ermöglicht, während zugleich die bindende Wechselwirkung Nb-C(3)

TABELLE 2	
BINDUNGSLÄNGEN (pm), BINDUNGSWINKEL (°) UND DIEDERWINKEL (°) VON	Ш

Nb-C(1)	208.2(2)	Nb-C(2)	266.8(2)
Nb-C(4)	228.6(2)	Nb-C(3)	262.7(2)
C(1)-C(2)	137.9(3)	C(1)-C(1a)	151.0(3)
C(2)-C(3)	142.9(3)	C(2)-C(2a)	151.9(3)
C(3)-C(4)	142.1(3)	C(3)-C(3a)	151.3(3)
C(4)-H(4)	104.2	C(4)-C(4a)	151.1(3)
Nb-C(1)-C(11)	137.2(2)	C(1)-C(2)-C(21)	122.7(2)
Nb-C(1)-C(2)	98.9(1)	C(1)-C(2)-C(3)	117.6(2)
C(11)-C(1)-C(2)	122.1(2)	C(21)-C(2)-C(3)	119.7(2)
C(2)-C(3)-C(31)	120.3(2)	Nb-C(4)-C(3)	87.0(1)
C(2)-C(3)-C(4)	120.4(2)	Nb-C(4)-C(41)	129.3(1)
C(31)-C(3)-C(4)	119.3(2)	Nb-C(4)-H(4)	89.9(1)
C(3)-C(4)-C(41)	122.0(2)	C(1)-Nb-C(4)	80.1(1)
C(3)-C(4)-H(4)	112.0(1)	C(41)-C(4)-H(4)	111.3(2)
C(4)-Nb-C(1)-C(2)	-43.8	Nb-C(1)-C(2)-C(3)	30.0
C(1)-C(2)-C(3)-C(4)	18.7	C(2)-C(3)-C(4)-Nb	-48.9
C(1)-Nb-C(4)-C(3)	48.2	, , , ,	
C(1)-Nb-C(4)-C(4a)	178.2	C(1)-Nb-C(4)-H(4)	-63.9

geschwächt wird. Die strukturellen Befunde zeigen damit noch klarer als die NMR-Spektren, dass zur Beschreibung der Bindung in III neben den Resonanzformeln IV einer $(1,3,4-\eta^3-1,3-Butadienyl)$ niob-Struktur auch die Grenzformel V einer Nioba-1,3-cyclopentadien-Struktur benötigt wird.

Die hier angenommene Ladungsverteilung ist nur bei elektronenreichen Zentralmetallen zu erwarten. Als Gegenbeispiel kann die Struktur von (η -Cyclopentadienyl)[1,3,4- η^3 -{1,2,3,4-tetrakis(trifluormethyl)-1,3-butadienyl}](triphenylphosphan)ruthenium dienen [23]: Hier sind die Abstände C(1)-C(2) 133 (III: 137.9),

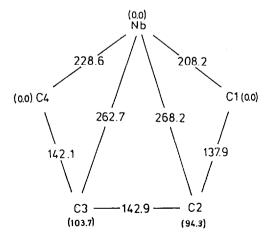


Fig. 2. Das NbC₄-Fragment mit den Nb-C- und C-C-Abständen. Die eingeklammerten Zahlen sind die Abstände (pm) der Atome von der Ebene [(C1), Nb, C(4)].

C(2)–C(3) 151 (III: 142.9) pm, während die Abstände C(3)–C(4) gleich (ca. 142 pm) sind. Ähnliche Bindungsverhältnisse wie in III finden sich auch in Bis(η -cyclopentadienyl)[η -(2,3-dimethyl-1,3-butadien)]zirkon [10], wobei dort die Ladungsübertragung in das LUMO des Butadiens noch ausgeprägter ist. Unsere Interpretation der Struktur von III impliziert im übrigen, dass die Bindung Nb–C(1) keine volle Doppelbindung ist.

Diskussion

Die vorliegenden Ergebnisse zeigen, dass am NbCp₂-Fragment eine oxidative Dimerisierung eines nicht aktivierten Acetylens möglich ist. Mit dem aktivierten Acetylen CF₃C≡CCF₃ reagiert Cp₂NbH₃ dagegen in unübersichtlicher Weise; u.a. entsteht auch ein Kopplungsprodukt Cp₂Nb[C₄(CF₃)₄] mit einer Nioba-2,4-cyclopentadien-Struktur [7]. Unserer Reaktion ist die unlängst beschriebene, säureinduzierte Kopplung der Tolan-Liganden in W(S₂CNEt₂)₂(C₂Ph₂)₂ unter Bildung eines 1,2,3,4-Tetraphenyl-1,3-butadienyl-Liganden an die Seite zu stellen [24].

Sterische und elektronische Gegebenheiten haben massiven Einfluss auf die Reaktionsrichtung und die Stabilität von Zwischenstufen. Das Decamethyl-Derivat von I, $(\eta-C_5Me_5)_2NbH_3$, reagiert auch mit überschüssigem 2-Butin nur zum (Butin)hydrido-Komplex (entsprechend II) [25]. Starke π -Acceptoren erzwingen bei (Alkin)hydrido-Komplexen $Cp_2NbH(C_2R_2)$ Insertionsreaktionen; so erhält man mit Kohlenmonoxid (Alkenyl)carbonyl-Komplexe $Cp_2Nb(CO)(CR=CHR)$ [3]. Bei der Synthese von III haben wir keinerlei NMR-spektroskopische Hinweise auf andere Zwischenstufen als II, etwa auf eine (2-Buten-2-yl)(2-butin)-Zwischenstufe $Cp_2Nb(C_2Me_2)(CMe=CHMe)$ finden können.

Dank

Wir danken dem Fonds der Chemischen Industrie für grosszügige Förderung dieser Arbeit.

Literatur

- 1 J.P. Collman und L.S. Hegedus, Principles and Application of Organotransition Metal Chemistry, University Science Books, Mill Valley, 1980.
- 2 S. Otsuka und A. Nakamura, Adv. Organomet. Chem., 14 (1976) 245.
- 3 J.A. Labinger und J. Schwartz, J. Am. Chem. Soc., 97 (1975) 1596.
- 4 J.A. Labinger, in G. Wilkinson, F.G.A. Stone und E.W. Abel (Hrsg.), Comprehensive Organometallic Chemistry, Bd. 3, Pergamon Press, Oxford, 1982, S. 705.
- 5 R.S. Threlkel und J.E. Bercaw, J. Am. Chem. Soc., 103 (1981) 2650.
- 6 J. Sala-Pala, J. Amaudrut, J.E. Guerchais, R. Mercier, J. Douglade und J.G. Theopold, J. Organomet. Chem., 204 (1981) 347.
- 7 J. Sala-Pala, J. Amaudrut, J.E. Guerchais, R. Mercier und M. Cerutti, J. Fluor. Chem., 14 (1979) 269.
- 8 G.E. Herberich und H. Mayer, unveröffentlicht.
- 9 H. Yasuda, Y. Kajihara, K. Mashima, K. Nagasuna, K. Lee und A. Nakamura, Organometallics, 1 (1982) 388.
- 10 G. Erker, J. Wicher, K. Engel, F. Rosenfeldt, W. Dietrich und C. Krüger, J. Am. Chem. Soc., 102 (1980) 6344.

- 11 B.E. Mann und B.F. Taylor, in P.M. Maitlis, F.G.A. Stone und R. West (Hrsg.), ¹³C NMR Data for Organometallic Compounds, Organometallic Chemistry, Academic Press, New York, 1981.
- 12 W.P. Fehlhammer, W.A. Herrmann und K. Öfele, in G. Brauer (Hrsg.), Metallorganische Komplex-verbindungen, Handbuch der Präparativen Anorganischen Chemie, Ferdinand Enke Verlag, Stuttgart, 1981, 3. Aufl., Bd. 3, S. 1968.
- 13 SDP-Programmsystem: B.A. Frenz, in H. Schenk, R. Olthof-Hazekamp, H. van Koningveld und G.C. Bassi (Hrsg.), Computing in Crystallography, Delft University Press, Delft, 1978, S. 64.
- 14 SHELX76-Programmsystem: G.M. Sheldrick, Program for Crystal Structure Determination, University of Cambridge, England, 1976.
- 15 Lit. 4, S. 770.
- 16 I. Bkouche-Waksman, C. Bois, J. Sala-Pala und J.E. Guerchais, J. Organomet. Chem., 195 (1980) 307.
- 17 J.W. Lauher und R. Hoffmann, J. Am. Chem. Soc., 98 (1976) 1729.
- 18 R.D. Wilson, T.F. Koetzle, D.W. Hart, A. Kvick, D.L. Tipton und R. Bau, J. Am. Chem. Soc., 99 (1977) 1775.
- 19 L.J. Guggenberger, P. Meakin und F.N. Tebbe, J. Am. Chem. Soc., 96 (1974) 5420.
- 20 F. Huq, W. Mowat, A.C. Skapski und G. Wilkinson, Chem. Commun., (1971) 1477.
- 21 T.E. Taylor und M.B. Hall, J. Am. Chem. Soc., 106 (1984) 1576.
- 22 J. Ushio, H. Nakatsuji und T. Yonezawa, J. Am. Chem. Soc., 106 (1984) 5892.
- 23 T. Blackmore, M.I. Bruce, F.G.A. Stone, R.E. Davis und A. Garza, J. Chem. Soc., Chem. Commun., (1971) 852.
- 24 J.R. Morrow, T.L. Tonker und J.L. Templeton, J. Am. Chem. Soc., 107 (1985) 5004.
- 25 N.D. McGrady, C. McDade und J.E. Bercaw, in B.L. Shapiro (Hrsg.), Organometallic Compounds, Bd. 1, Texas A&M University Press, College Station, Texas, 1983, S. 46.